UNCLASSIFIED

Defense Technical Informatipn Center
Compilation Part Notice

ADPO12428

TTTLE: Maintaining Finger Dexterity in the Cold: A Comparson of Passive,
Eirect and Indirect Hand Heating Methods

ISTRIBUTION: Approved for public release, distribution unlimited
Availability: Hard copy only.

This paper is part of the following report:

TTTLE: Blowing Hot and Cold: Protecting Against Climatic Extremes
[Souffler le chaud et le froid: comment se proteger contre les conditions
climstiques extremes]

To order the complete compilation report, use: ADA403853

The component part is provided here to allow users access to individually authored sections
ol proceedings, annals, symposia, etc. However, the component should be considered within
the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP012406 thru ADP012451

UNCLASSIFIED




20-1

Maintaining Finger Dexterity in the Cold: A Comparison of Passive,
Direct and Indirect Hand Heating Methods

Dr. Dragan Brajkovic and Dr. Michel B. Ducharme
Human Protection and Performance Group, Defence and Civil Institute of Environmental Medicine
1133 Sheppard Ave. W., Toronto, Ontario, M3M 3B9, Canada

Summary

Examined finger dexterity performance and extremity comfort during cold exposure while an attempt
was made to prevent or minimize hand cooling by either passive hand insulation (thin, knitted gloves and
Arctic mitts), direct hand heating (electrically heated gloves), or indirect hand heating (heating the torso
in an attempt to increase blood flow to the hands) with and without gloves. Eight male subjects were
exposed to -25°C air (wind ~ 2 km/h) for three hours. A three-layer, Arctic clothing ensemble was worn
during all experiments. Finger temperature, finger blood flow, toe temperature, rectal temperature, and
finger dexterity were measured. Indirect hand heating was found to be superior to passive and direct hand
heating because not only was finger comfort and finger dexterity maintained, but the whole body (toes
included) remained comfortable for the full three-hour session. In addition, with indirect hand heating,
fine finger dexterity tasks can be performed barehanded, if necessary, without the risk of cold injury.

Introduction

There is a military need for a hand heating system that will keep the hands warm and still allow for good
finger dexterity. Soldiers will often remove their mitts to improve finger dexterity and will work with
thin contact gloves to do a task more effectively. However, removing the bulky mitts or gloves can lead
to finger discomfort or pain due to the decreased insulation over the hands. Frostbite is also a possibility,
depending on the ambient condition and the length of the cold exposure. Therefore, removing bulky
gloves or mitts to perform a task with thin contact gloves is not an ideal solution.

There are also some situations in which soldiers may remove their bulky gloves or mitts and their thin
contact gloves in order to perform fine finger dexterity work with their bare hands. For example, a medic
out in the battlefield may work barehanded to treat a soldier’s wound. However, by working barehanded
the medic is at a greater risk of cold injury. Therefore, it would be nice to have a hand heating system
that could keep the hands warm even when there is minimal or no insulation over the hands!

It is especially difficult to keep the hands of soldiers warm and comfortable when they are inactive and
are not generating very much metabolic heat. The extremities are the first to cool during periods of
inactivity. A sniper, for example, may have to spend a prolonged period of time outdoors in the cold with
little or no body movement while focusing on a target. It is important that the soldier remain focused on
the target and not be distracted by the finger pain or discomfort that might occur while outside on a cold
day. In addition, the sniper’s shooting accuracy may be decreased if his core temperature decreases
enough to cause shivering to occur. The involuntary muscle contractions that occur during shivering are
definitely undesirable when the sniper is trying to hold his rifle steady. Therefore, it would be ideal to
keep the body and fingers comfortable in order to maximize shooting performance.

Purpose

To examine finger dexterity performance and extremity comfort during cold exposure while an attempt
was made to prevent or minimize hand cooling by either passive hand insulation (thin, knitted gloves and
Arctic mitts), direct hand heating (electrically heated gloves), or indirect hand heating (heating the torso
in an attempt to increase blood flow to the hands).

Paper presented at the RTO HFM Symposium on “Blowing Hot and Cold. Protecting Against Climatic Extremes”,
held in Dresden, Germany, 8-10 October 2001, and published in RTO-MP-076.



Methods
Subjects

Eight healthy, non-smoking male volunteers with the following characteristics were recruited
(mean+S.D.): age 32.8+7.4 years, height 176.4+6.3 cm, weight 82.4+7.5 kg, and body surface area
1.99+0.11 m®*. Body surface area was calculated using the formula of Dubois and Dubois (5). All
subjects were medically screened by a physician at DCIEM before being asked for their written consent.
This study was approved by the Human Ethics Committee at the Defence and Civil Institute of
Environmental Medicine (DCIEM).

Ambient Condition and Clothing Worn

Subjects sat in a chair while exposed to an ambient temperature of -25°C (wind ~ 2 km/h) for three
hours during all tests except when finger skin temperature (Tgny) reached 6°C, at which point the
exposure was terminated. A three-layer, Arctic clothing ensemble [0.556 m-k*/W (3.6 Clo)] was worn
during all experiments. The three-layer system included a fleece garment (first layer), an uninsulated
inner parka and pants (second layer), and an insulated outer parka and pants (third layer). A thin pair of
long, cotton underwear was worn under the fleece pants. Standard CF mukluks, woolen socks, and a
balaclava were also worn. The 3.6 Clo Arctic clothing insulation values did not take into account the
long, cotton underwear worn under the fleece pants that have a Clo value of 0.3 (0.05 m*°K-W™).

Hand Heating Conditions

Subjects were exposed to 4 conditions designated as passive, direct, indirect-passive, and indirect-bare.
Each cold exposure was initiated at approximately 10 a.m. each morning. During the passive condition,
thin, knitted gloves and Arctic mitts covered the hands. During the direct condition, the hands were
actively heated with thin, electrically heated gloves and Arctic mitts were worn over the gloves. Finally,
during the two indirect conditions, an electrically heated vest was used to actively heat the body in an
attempt to increase the vasodilative response in the hands. During indirect-passive, the hands were
insulated with thin, knitted, non-heated gloves and Arctic mitts, whereas during indirect-bare, the hands
were bare during the entire 3 hour cold exposure. The tests were done one week apart over a time period
spanning from January to July. The extremity temperature responses observed during this study are
representative of a mixed, male population in which some subjects may have had a greater degree of
peripheral cold acclimatization as a result of spending more time working or playing outdoors during the
winter.

Design of Electrically Heated Vest and Gloves

The electrically heated vest consisted of 10 Kapton® insulated flexible heaters (Omega
Engineering, Stamford, CT, USA) fixed around the torso as follows: two heaters (each 12 x 20
cm) on the chest, two heaters on the abdomen (each 8 x 30 cm), one heater at each side of the
torso (each 8 x 20 cm), two heaters over the shoulder area (each 8 x 30 cm), and two heaters on
the back (each 15 x 30 cm). The heaters covered a total area of 0.266 m”. The heaters were not
in direct contact with the skin, but inside a fire resistant pocket made of Nomex® fabric. In
addition, a one centimeter layer of Thinsulate® insulation was placed inside the pocket on the
outer surface of the heater. The Thinsulate® insulation was covered by a piece of reflective
mylar to help reflect the radiative heat back to the torso. Once the heaters were placed inside the
pockets, the pockets were sewn together to form a vest that covered a total area of 0.366 m*. A
tight, short-sleeved lycra body suit, which extended down to the mid-thigh level, was worn over
the heaters to optimize the contact between the skin and the heaters. The electrically heated
gloves used were constructed using a 300 strand tinsel wire that was knitted into a tight-fitting,
nylon glove (Rapier Missile Glove, Vacuum Reflex Ltd., Suffolk, UK). The heating wire of
each glove surrounded each finger and partially covered the back of the hand. The palms were
not heated.
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In regard to the electrically heated vest, pre-selected voltages were sent by five current-limiting
power supplies (two model 6030A, 0-200V/0-17A, 1000W; three model 6034A, 0-60V/0-10A,
200W; Hewlett Packard) to the five pairs of heaters to achieve a skin temperature of 42+0.5°C
under each heater. The power supplies were controlled by a computer that allowed the user to
input the desired voltage for each pair of heaters. To ensure that the skin temperature under the
heaters did not reach 45°C at any time, the computer turned off the heater completely if skin
temperature reached 44°C. The electrically heated glove heater power was adjusted manually so
that the mean finger skin temperature (Trng) was the same as the Ty, established during the
indirect-passive hand heating condition.

Finger Dexterity Tests

During the three-hour cold exposure, the subjects were asked to perform either a C-7 rifle disassembly
and assembly task (C-7 rifle task) or a Purdue Pegboard test (PP test) every 30 min. The C-7 rifle task
was done at time 0, 60, 120, and 180 min, whereas the PP test was done at time 30, 90, and 150 min. The
C-7 rifle task was chosen because it was representative of the type of finger dexterity task that might be
carried out by soldiers in the field. Subjects were required to do a "detailed stripping” of the rifle as
outlined in "The Warrior" Canadian Forces combat survival manual (1). This involves an eight-step
"field strip" (step nine was omitted for this experiment) and a six-step "detailed strip” (step three was
omitted for this experiment). A total of 10 pieces (primarily made from metal) were disassembled. The
process was then repeated in the reverse order to reassemble the C-7 rifle.

The PP test, on the other hand, is an extensively used fine finger dexterity test, which has been shown to
be a reliable and valid measure of finger dexterity over the years (2, 9). The Purdue Pegboard consists of
a pegboard with two columns of small holes down the middle of the board and four small cups along the
top of the board that contain small metal pins, washers, and collars. The object of the PP test is to put
together as many assembled units as possible in a one min period (one assembled unit consists of: pin,
washer, collar, washer). The subjects were asked to perform three trials of the one-min test with
approximately a 15-30 second break between each trial. A PP score was recorded for each trial. In
calculating the PP score, the subject was awarded one point for each piece (i.e., pin, washer, or collar)
placed on the PP board. In Fig. 5, each data point represents the average of three trials. During condition
indirect-bare, the tests were done barehanded, whereas during the other three conditions, the Arctic mitts
were removed, but the knitted, contact gloves were kept on for the duration of the dexterity tests. During
the completion of the three PP test trials, the hands were exposed to the -25°C air for approximately four
min, whereas the C-7 rifle task took approximately one-to-three min to complete.

The subjects were taught how to do the C-7 test and the PP test by the investigators during a 45 min
training session which was arranged with the subject prior to start of the experimental sessions. In
addition to the training session, during the experimental sessions, the subjects were asked to practice the
C-7 and PP tests prior to each entry into the cold chamber. The subjects practiced the tests until a plateau
in performance was observed. The subjects practiced the tests outside the cold chamber while wearing
the same upper body CF Arctic clothing worn inside the cold chamber, but they were exposed to a 25°C
ambient environment. Only shorts covered the lower body during the practice session.

Physiological Variables Measured
During the three-hour cold exposure, the following physiological variables were measured:

Finger skin temperature (Tsn,) was measured using a cylinder-shaped thermistor (1.9 mm x 8.6 mm;
Baxter 400 Series rectal/esophageal probe without the protective sheath covering (time constant = 0.9
seconds in well-stirred water), Baxter Healthcare Corp., Deerfield, IL, USA). A probe was placed on the
pad of the "ring" fingertip of each hand. It was held in position on the skin with double-sided adhesive
tape (3M Double-Stick Discs, 3M Medical Division, St. Paul, MN, USA) and a thin strip of surgical tape
(3M Transpore Tape, 3M Canada Inc., London, ON, Canada) without constricting the finger.



Toe skin temperature (T.) was measured using a DCIEM lab-made, banjo probe (diameter = 10.2 mm,
max height = 4.7 mm) that contains a protruding YSI 44004 thermistor bead. The probe is similar in
shape to the YSI 081 standard surface probe (Yellow Springs Instruments, Yellow Springs, OH, USA),
but it has a plexi-glass contact surface (instead of the stainless steel surface used in the YSI probe) and it
has a time constant of 5 seconds in well-stirred water. A probe was placed on the medial side of the big
toe of each foot. The toe thermistor was held in place against the skin with surgical tape (3M Transpore
Tape, 3M Canada Inc., London, ON, Canada).

Rectal temperature (T,.) was measured via a thermistor (Pharmaseal 400 series, Baxter, Valencia, CA,
USA) inserted 15 cm beyond the anal sphincter.

Measurements of Ty, Tioe, and T were made five times per min over the course of three hours using a
data acquisition system (model 3497A data acquisition/control unit; Hewlett Packard). An average value
was printed out each min.

Finger blood flow (Qjng) was measured using a 780 nm laser Doppler flowmeter probe (PF4001 Laser
Doppler Flowmeter, Perimed, Stokholm, Sweden). A blood flow probe was placed next to each finger
temperature thermistor. The unit of measurement used to represent the skin blood flow is the perfusion
unit (PU). This is a relative unit of blood flow. A calibration standard is used to adjust the laser Doppler
flowmeter readings to coincide with the readings obtained with a motility standard. Qs Was measured
15 times per minute for three hours and an average Qg,, Was taken every minute.

Statistical Analyses

A two-way ANOVA for repeated measures was used to compare conditions indirect-passive, direct and
passive. The independent variables were "heating method" and "time". A two-way ANOVA was also
used to compare the indirect-passive and indirect-bare conditions. The independent variables were "hand
insulation" and "time". These analyses were done for the dependent variables C-7 rifle time, PP score,
Ting, Tioe, and Ty from O to 180 min. Five-min averages were calculated for the 180 min of data so that
time 2, 7, 12 min, etc. represented the data from 0 to 4 min, 5 to 9 min, 10 to 14 min, etc. Five-min
averages were not calculated for the finger dexterity data (i.e., C-7 rifle time and PP score) because data
for these variables were collected every 30 to 60 min. Results were considered statistically significant at
p<0.05 (using the Greenhouse-Geisser adjustment for repeated measures). A Newman Keuls post-hoc
test was used to determine if there was a significant difference in any of the dependent variables from 0
to 180 min. All values are presented as mean+SE.

Results
Finger skin temperature (Fig. 1)

Tng was maintained at an average of 35+0.1°C for three hours during the indirect-passive and direct hand
heating conditions, whereas during the indirect-bare hand heating condition, Ts,, cycled between
24+1.3°C and 3340.9°C for three hours. The hands were very comfortable. During the passive heating
condition, Tgy, decreased from 35+0.3°C to 12+0.5°C from the beginning to the end of the exposure and
remained below 15°C for the last 90 min of the cold exposure. This was very uncomfortable for most
subjects.
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Fig. 1 Mean finger skin temperature as a function of type of
heating over time during exposure to -25°C air. MeantSE (n=8§).

Finger blood flow (Fig. 2)

Qiing Was maintained at 223228 PU and 255+19 PU during the indirect-bare and indirect-passive hand
heating conditions, respectively, whereas during direct hand heating, Qg decreased from 213121 PU to
27+5 PU from time 10 to 180 min. During passive heating, Qsne decreased from 191+50 PU to 25%5 PU
from time 10 to 180 min. Notice that during the direct hand heating method, blood flow was very low
relative to the indirect heating-passive insulation condition, even though finger temperature was
maintained, on average, at 35+0.1°C in both conditions. Hence, this shows that electrically heated gloves
only heat the surface of the hand. During the dexterity tests, the Qgn, data was not presented due to
movement artefacts.
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Fig. 2 Mean finger blood flow as a function of type of heating over
time during exposure to -25°C air. MeantSE (n=8§).



Toe skin temperature (Fig. 3)

Tiwe Was maintained at 334+0.2°C during the indirect-passive heating condition, whereas during the
indirect-bare condition, Ty, decreased from 33%+1.0°C to 28+1.9°C over the course of three hours.
During the passive and direct conditions, Ty decreased from 3321.0°C to 9+0.3°C from the start to the
end of the exposure. Ty, was < 15°C during the last 90 min of the cold exposure.
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Fig. 3 Mean toe temperature as a function of type of heating
over time during exposure to -25°C air. Mean+SE (n=8). Direct
condition plot is directly below passive condition plot.

A Rectal temperature (Fig. 4)

During the indirect-passive heating condition, T,. increased by 0.23+0.04°C after an hour, relative to the
start of the experiment, and then slowly decreased back down to its original value (at time 0 min) by time
180 min. There was no significant change in T, during the indirect-bare condition. During the direct and
passive conditions, T,. decreased significantly by 0.64+0.06°C and 0.57+0.08°C, respectively, by time

180 min.
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Finger dexterity performance
Purdue Pegboard Score (Fig. 5) and C-7 Rifle Test Time (Fig. 6)

During the Purdue Pegboard finger dexterity tests, the passive hand heating condition was the only
condition in which there was a significant decrement in finger dexterity over time (40% decrease after
150 min, relative to performance at time 30 min). At time 150 min, the Purdue Pegboard (PP) score was
not significantly different between conditions indirect-passive and direct. During the indirect-passive
and direct hand heating conditions, PP score remained stable from time 30 to 150 min at 20+2 and 1842
points, respectively, whereas during the passive condition, PP score decreased significantly from 1843
points at time 30 min to 11+1 points by time 150 min. During indirect-bare, PP score remained relatively
stable at 4843 points. Finger dexterity improved by 60% when the hands were bare compared to wearing
gloves (i.e., compare PP scores between indirect-passive and indirect-bare). This is in agreement with
Havenith and Vrijkotte’s (6) finding that finger dexterity decreases by up to 70% when gloves were worn
compared to bare-hand performance.

During the C-7 rifle finger dexterity tests, the passive hand heating condition, once again, was the only
condition in which there was a significant decrement in finger dexterity over time (30% decrease after
180 min, relative to performance at time 0 min). It should be noted that, unlike the Purdue Pegboard test,
there is an inverse relationship between finger dexterity and the rifle test time. That is, a higher rifle time
corresponds to a poorer dexterity performance because it takes the subject a longer period of time to
disassemble and reassemble the rifle. At time 180 min, the C-7 rifle test time was not significantly
different between conditions indirect-passive and direct. During the indirect-passive and direct hand
heating conditions, C-7 rifle test time remained stable at 9615 and 98+6 sec, respectively, whereas during
the passive condition, C-7 rifle test time increased significantly from 10416 sec at time 0 min to 144+19
sec by time 180 min. During indirect-bare, C-7 rifle time remained relatively stable at 90+5 sec. Finger
dexterity was not improved when the hands were bare compared to wearing gloves (i.e., compare C-7
rifle test scores between indirect-passive and indirect-bare) most likely because the C-7 rifle test is a test
of gross finger/hand dexterity as opposed to a test of fine finger dexterity (i.e., the Purdue Pegboard test).
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Fig. 5 Mean Purdue Pegboard (PP) score as a function of type of
heating over time during exposure to -25°C air. Mean+SE (n=8). *
significant difference in PP score during passive hand heating
condition at time 150 min relative to PP score during direct hand
heating condition at time 150 min.
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Discussion

Indirect hand heating (torso heating) has many advantages over passive (gloves and Arctic mitts) and
direct (electrically heated gloves) hand heating. Most notably, the ability to maintain extremity comfort,
finger dexterity, and body comfort (no shivering observed) in the cold (-25°C) while only wearing thin,
contact gloves. In addition, with indirect hand heating, finger and toe temperatures remain comfortable
(>25°C) without the use of any direct auxiliary hand/foot heating devices which are prone to wear and
tear during repetitive work in the cold. Another problem with electrically heated insoles/socks is that the
feet may be comfortable when an individual sits in the cold, but the feet may be too hot when pressure is
applied to the sole of the foot by standing (7). Finally, indirect hand heating can maintain finger dexterity
and finger comfort even when the hands are bare. This allows a soldier to perform fine finger dexterity
work, while minimizing/eliminating the risk of frostbite.

In the present study, direct hand heating was effective in maintaining finger dexterity for three hours
during exposure to -25°C air, even though finger blood flow was minimal. This seems to suggest that
finger dexterity can be maintained as long as finger skin temperature is relatively high, regardless of
finger blood flow; however, such a conclusion cannot be made without considering the effect of forearm
muscle temperature on finger dexterity. LeBlanc (8) found that a cool forearm (muscle temperature not
reported) can significantly decrease finger dexterity (due to the effect of muscle cooling on finger
movement) even if the hand is immersed in 33°C water. Finger dexterity will most likely decrease,
regardless of a high finger skin temperature, once forearm muscle temperature falls below a certain
temperature threshold. A recent study found that finger dexterity was not affected (when finger skin
temperature was maintained above 30°C) even if the forearm muscle temperature was decreased to 30°C
(3). Therefore, the forearm temperature threshold for a decrease in finger dexterity to be observed is
below 30°C.

Hence, due to the effect of forearm cooling on finger dexterity, a decrement in finger dexterity may have
been observed with direct hand heating if less clothing insulation was worn. In addition, the earlier, and
possibly greater intensity of shivering observed with less insulation may have directly affected finger
dexterity performance due to the involuntary muscle movements that would affect hand/finger steadiness.
A previous study (done at the same ambient temperature as the present study) found that whole-body
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shivering occurred during the last two hours of a three-hour session when 2.6 Clo was worn over the
body (4). Indirect hand heating may be more effective in maintaining finger dexterity (relative to direct
hand heating) when the body clothing insulation is reduced somewhat compared to the insulation worn
during the present study. Further research is needed to answer some of these proposed hypotheses.

Conclusion: Indirect hand heating is superior to passive and direct hand heating if it is necessary to do
fine finger dexterity work in the cold for an extended period of time.
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